Описание
Номер билета студент определяет в соответствии с заглавной буквой фамилии.
Номер билета | Первая буква фамилии | Номер билета | Первая буква фамилии |
1 | А | 11 | Н |
2 | Б | 12 | О |
3 | В | 13 | П |
4 | Г | 14 | Р |
5 | Д | 15 | С |
6 | Е Е Ж | 16 | Т |
7 | З И И | 17 | У Ф |
8 | К | 18 | Х Ц Ч |
9 | Л | 19 | Ш Щ |
10 | М | 20 | Э Ю Я |
Ответ на билет необходимо прислать вместе с выполненными заданиями для обязательного выполнения (задачи) в одном письме.
Билет № 1
Вопрос №1. Функция. Предел функции, критерий Коши существования и теорема единственности предела функции.
Вопрос №2. Определенный интеграл. Свойства определенного интеграла.
Вопрос №3. Числовой ряд, сходимость числового ряда. Критерий Коши сходимости числового ряда, необходимое условие сходимости, достаточное условие расходимости.
Задача. Найти точки перегиба функции
Билет № 2
Вопрос №1. Функция. Предел функции. Правила нахождения предела
Вопрос №2. Интегрируемая функция, определенный интеграл. Классы интегрируемых функций.
Вопрос №3. Экстремум функции многих переменных, в том числе двух переменных. Необходимое и достаточное условие существования точки локального экстремума функции многих переменных, в том числе двух переменных.
Задача. Найти асимптоты функции
Билет № 3
Вопрос № 1. Функция. Предел функции. Теоремы о локальном поведении функции.
Вопрос №2. Первообразная. Вопрос единственности первообразной. Неопределенный интеграл.
Вопрос №3. Числовой ряд с неотрицательными членами. Признаки сходимости знакоположительных числовых рядов.
Задача. Найти точки локального экстремума функции двух переменных f(x,у) = 8х – 4у + х2 – ху + у2 + 15
Билет № 4
Вопрос №1. Непрерывная функция. Классификация точек разрыва. Локальные свойства непрерывных функций.
Вопрос №2. Первообразная. Неопределенный интеграл, его свойства, способы интегрирования.
Вопрос №3. Экстремум функции многих переменных, в том числе двух переменных. Необходимое и достаточное условие существования точки локального экстремума функции многих переменных, в том числе двух переменных.
Задача. Исследовать числовой ряд на абсолютную и условную сходимость
Билет № 5
Вопрос № 1. Непрерывная функция. Ограниченная функция. Теоремы Вейерштрасса.
Вопрос №2. Интегрируемая функция, определенный интеграл. Необходимое и достаточное условие интегрируемости ограниченной функции.
Вопрос №3. Числовой ряд, сходимость числового ряда. Критерий Коши сходимости числового ряда, необходимое условие сходимости, достаточное условие расходимости.
Задача. Найти точки локального экстремума функции двух переменных f(х,у) = х2 + у2 – 6х – 8у + 12
Билет № 6
Вопрос №1. Монотонная функция. Ограниченная функция. Теорема о существовании односторонних пределов монотонной функции.
Вопрос №2. Интегрируемая функция, определенный интеграл. Геометрический смысл определенного интеграла.
Вопрос №3. Числовой ряд с неотрицательными членами. Признаки сходимости знакоположительных числовых рядов.
Задача. Найти неопределенный интеграл
Билет № 7
Вопрос № 1. Функция, обратная функция. Непрерывная функция. Монотонная функция. Теорема о существовании и свойствах обратной функции.
Вопрос №2. Интегрируемая функция, определенный интеграл. Формула среднего значения функции.
Вопрос №3. Экстремум функции многих переменных, в том числе двух переменных. Необходимое и достаточное условие существования точки локального экстремума функции многих переменных, в том числе двух переменных.
Задача. Найти неопределенный интеграл
Билет № 8
Вопрос №1. Дифференцируемая функция, производная, дифференциал. Необходимое и достаточное условие дифференцируемости функции. Геометрический смысл производной и дифференциала.
Вопрос №2. Интеграл с переменным верхним пределом, его свойства.
Вопрос №3. Экстремум функции многих переменных. Необходимое и достаточное условие существования точки локального экстремума функции многих переменных.
Задача. Исследовать числовой ряд на абсолютную и условную сходимость
Билет № 9
Вопрос № 1. Дифференцируемая функция, производная, дифференциал. Правила нахождения производной и дифференциала.
Вопрос №2. Интеграл с переменным верхним пределом. Теорема о существовании первообразной для непрерывной функции. Формула Ньютона-Лейбница.
Вопрос №3. Знакочередующийся числовой ряд, признак сходимости Лейбница. Абсолютная и условная сходимость числового ряда.
Задача. Найти точки перегиба функции
Билет № 10
Вопрос №1. Производная и дифференциал, в том числе высших порядков; п- дифференцируемая функция. Правила нахождения производной и дифференциала.
Вопрос №2. Несобственный интеграл, сходимость несобственного интеграла. Критерий Коши сходимости несобственного интеграла.
Вопрос №3. Экстремум функции многих переменных, в том числе двух переменных. Необходимое и достаточное условие существования точки локального экстремума функции многих переменных, в том числе двух переменных.
Задача. Найти асимптоты функции
Билет № 11
Вопрос № 1. Дифференцируемая функция, производная, геометрический смысл производной и дифференциала. Ограниченная функция. Теорема Ферма.
Вопрос №2. Числовой ряд, сходимость числового ряда. Критерий Коши сходимости числового ряда, необходимое условие сходимости, достаточное условие расходимости.
Вопрос №3. Определенный интеграл. Свойства определенного интеграла.
Задача. Найти несобственный интеграл
Билет № 12
Вопрос №1. Дифференцируемая функция, производная, дифференциал. Геометрический смысл производной и дифференциала. Формула Лагранжа.
Вопрос №2. Алгоритм нахождения точных граней функции многих переменных, заданной на замкнутом ограниченном множестве, в том числе линейной функции многих переменных на замкнутом множестве с линейными границами.
Вопрос №3. Интеграл с переменным верхним пределом. Теорема о существовании первообразной для непрерывной функции. Формула Ньютона-Лейбница.
Задача. Исследовать числовой ряд на абсолютную и условную сходимость
Билет № 13
Вопрос № 1. Непрерывная функция. Дифференцируемая функция, производная, дифференциал. Геометрический смысл производной и дифференциала. Теорема Ролля.
Вопрос №2. Условный экстремум функции многих переменных. Способы нахождения точек условного экстремума функции многих переменных.
Вопрос №3. Определенный интеграл. Свойства определенного интеграла.
Задача. Найти несобственный интеграл
Билет № 14
Вопрос №1. Дифференцируемая функция, производная, дифференциал. Теорема Коши. Правило Лопиталя.
Вопрос №2. Числовой ряд с неотрицательными членами. Признаки сходимости знакоположительных числовых рядов.
Вопрос №3. Первообразная. Неопределенный интеграл, его свойства, способы интегрирования.
Задача. Найти определенный интеграл
Билет № 15
Вопрос № 1. Монотонная функция. Дифференцируемая функция. Достаточное условие возрастания и убывания функции.
Вопрос №2. Экстремум функции многих переменных, в том числе двух переменных. Необходимое и достаточное условие существования точки локального экстремума функции многих переменных, в том числе двух переменных.
Вопрос №3. Интеграл с переменным верхним пределом. Теорема о существовании первообразной для непрерывной функции. Формула Ньютона-Лейбница.
Задача. Исследовать числовой ряд на абсолютную и условную сходимость
Билет № 16
Вопрос №1. Локальный и краевой экстремум функции. Необходимое и достаточное условие существования точки локального экстремума.
Вопрос №2. Знакочередующийся числовой ряд, признак сходимости Лейбница. Абсолютная и условная сходимость числового ряда.
Вопрос №3. Первообразная. Неопределенный интеграл, его свойства, способы интегрирования.
Задача. Найти асимптоты функции
Билет № 17
Вопрос № 1. Направление выпуклости функции. Дифференцируемая функция, n-дифференцируемая функция. Достаточное условие направления выпуклости функции.
Вопрос №2. Дифференцируемая функция многих переменных, частные производные и дифференциал функции многих переменных. Необходимое и достаточное условие дифференцируемости функции многих переменных.
Вопрос №3. Числовой ряд, сходимость числового ряда. Критерий Коши сходимости числового ряда, необходимое условие сходимости, достаточное условие расходимости.
Задача. Найти определенный интеграл
Билет № 18
Вопрос №1. Перегиб функции. Необходимое и достаточное условие существования точки перегиба.
Вопрос №2. Экстремум функции многих переменных. Необходимое и достаточное условие существования точки локального экстремума функции многих переменных.
Вопрос №3. Интеграл с переменным верхним пределом. Теорема о существовании первообразной для непрерывной функции. Формула Ньютона-Лейбница.
Задача. Исследовать числовой ряд на абсолютную и условную сходимость
Билет № 19
Вопрос № 1. Асимптотическое поведение функции, необходимое и достаточное условие существования наклонной асимптоты, вертикальная асимптота.
Вопрос №2. Функция многих переменных. Предел, непрерывность, ограниченность функции многих переменных.
Вопрос №3. Интегрируемая функция, определенный интеграл. Формула среднего значения функции.
Задача. Найти точки локального экстремума функции двух переменных f(х,у) = 8х – 4у + х2 – ху + у2 + 15
Билет № 20
Вопрос №1. Алгоритм исследования функции. Алгоритм нахождения наибольшего и наименьшего значений функции.
Вопрос №2. Частные производные и дифференциал, в том числе высших порядков, функции многих переменных. Теорема о неизменности значения смешанной производной.
Вопрос №3. Интегрируемая функция, определенный интеграл. Геометрический смысл определенного интеграла.
Задача. Исследовать числовой ряд на абсолютную и условную сходимость