Описание
Номер билета студент определяет в соответствии с заглавной буквой фамилии.
1 | А | 11 | Н |
2 | Б | 12 | О |
3 | В | 13 | П |
4 | Г | 14 | Р |
5 | Д | 15 | С |
6 | Е Ё Ж | 16 | Т |
7 | З И Й | 17 | У Ф |
8 | К | 18 | Х Ц Ч |
9 | Л | 19 | Ш Щ |
10 | М | 20 | Э Ю Я |
Ответы на вопросы/задания в билете оформляются в произвольном виде.
Ответ на билет необходимо прислать вместе с выполненными заданиями для обязательного выполнения (задачи) в одном письме. Титульный лист см. Приложение 1.
билет № 1
Вопрос №1. Игра с нулевой суммой. Статистический подход, критерий оптимальности смешанной стратегии. Основная теорема теории игр.
Вопрос №2. Принципы математического моделирования конфликтных ситуаций в условиях неопределенности и риска. Игра как математическая модель.
Вопрос №3. Игра с природой, платежная матрица, матрица рисков. Критерии оптимальности стратегии игрока при отсутствии информации о состоянии природы: критерий минимаксного риска Сэвиджа.
Задача. Решить игру с нулевой суммой с платёжной матрицей:
1 | 2 | 3 | |
А= | 4 | 5 | 6 |
7 | 8 | 9 |
билет № 2
Вопрос №1. Игра как математическая модель конфликтной ситуации в условиях неопределенности и риска, игроки и их цели, степень антагонизма, неопределенность как отсутствие информации, риск как упущенная выгода, оптимальная программа действий.
Вопрос №2. Игра с нулевой суммой. Построение эквивалентной пары двойственных задач линейного программирования, построение эквивалентной платежной матрицы.
Вопрос №3. Игра с природой, платежная матрица. Критерии оптимальности стратегии игрока при отсутствии информации о состоянии природы: критерий пессимизма- оптимизма Гурвица.
Задача. Решить игру с природой с платёжной матрицей:
18 | 28 | 37 | |
А= | 64 | 55 | 46 |
37 | 88 | 19 |
билет № 3
Вопрос №1. Принципы математического моделирования конфликтных ситуаций в условиях неопределенности и риска. Игра как математическая модель.
Вопрос №2. Стратегические игры, стратегии как программы действий, выигрыш как численное выражение цели, матрицы выигрышей, биматричные игры, оптимальный выигрыш, оптимальные стратегии.
Вопрос №3. Игра с природой, платежная матрица. Критерии оптимальности стратегии игрока при отсутствии информации о состоянии природы: максимаксный критерий, максиминный критерий Вальда.
Задача. Решить игру с нулевой суммой с платёжной матрицей:
89 | 82 | 73 | |
А= | 64 | 55 | 46 |
37 | 28 | 19 |
билет № 4
Вопрос №1. Игра как математическая модель конфликтной ситуации в условиях неопределенности и риска, игроки и их цели, степень антагонизма, неопределенность как отсутствие информации, риск как упущенная выгода, оптимальная программа действий.
Вопрос №2. Игра с нулевой суммой, крайняя степень антагонизма, игрок и конкурент, платежная матрица. Принцип получения гарантированного результата в наихудших условиях.
Вопрос №3. Игра с природой, нулевая степень антагонизма, игрок и природа, состояния природы и оптимальная стратегия игрока, платежная матрица, матрица рисков, распределение вероятностей состояний природы.
Задача. Решить игру с природой с платёжной матрицей:
1 | 2 | 3 | |
А= | 4 | 5 | 6 |
7 | 8 | 9 |
билет № 5
Вопрос №1. Принципы математического моделирования конфликтных ситуаций в условиях неопределенности и риска. Игра как математическая модель.
Вопрос №2. Игра с нулевой суммой. Статистический подход, чистые стратегии, частота чистых стратегий, смешанные стратегии. Средний ожидаемый выигрыш и проигрыш, нижняя и верхняя цена игры. Критерий оптимальности смешанной стратегии.
Вопрос №3. Игра с природой. Статистический подход в играх с природой, условный средний ожидаемый выигрыш стратегии, риск как среднеквадратичное отклонение условного выигрыша. Статистический двухпараметрический критерий максимального ожидаемого выигрыша и минимального среднеквадратичного риска.
Задача. Решить игру с нулевой суммой с платёжной матрицей:
8 | 8 | 7 | |
А= | 6 | 5 | 4 |
3 | 8 | 19 |
билет № 6
Вопрос №1. Игра как математическая модель конфликтной ситуации в условиях неопределенности и риска, игроки и их цели, степень антагонизма, неопределенность как отсутствие информации, риск как упущенная выгода, оптимальная программа действий.
Вопрос №2. Игра с нулевой суммой. Построение эквивалентной пары двойственных задач линейного программирования, построение эквивалентной платежной матрицы.
Вопрос №3. Игра с природой, распределение вероятностей состояний природы. Статистический двухпараметрический критерий максимального ожидаемого выигрыша и минимального среднеквадратичного риска. Построение множества оптимальности с учетом ожидаемого выигрыша и среднеквадратичного риска, принцип оптимальности по Парето.
Задача. Решить игру с природой с платёжной матрицей:
89 | 82 | 73 | |
А= | 64 | 54 | 46 |
37 | 28 | 19 |
билет № 7
Вопрос №1. Принципы математического моделирования конфликтных ситуаций в условиях неопределенности и риска. Игра как математическая модель.
Вопрос №2. Игра с нулевой суммой. Статистический подход, критерий оптимальности смешанной стратегии. Основная теорема теории игр.
Вопрос №3. Игра с природой, распределение вероятностей состояний природы. Статистический подход в играх с природой, условный средний ожидаемый выигрыш стратегии, условный средний ожидаемый риск стратегии.
Задача. Решить игру с нулевой суммой с платёжной матрицей:
1 | 2 | 3 | |
А= | 6 | 5 | 4 |
3 | 8 | 1 |
билет № 8
Вопрос №1. Игра как математическая модель конфликтной ситуации в условиях неопределенности и риска, игроки и их цели, степень антагонизма, неопределенность как отсутствие информации, риск как упущенная выгода, оптимальная программа действий.
Вопрос №2. Игра с нулевой суммой, критерий оптимальности смешанной стратегии. Нахождение оптимальной смешанной стратегии как оптимального решения задачи линейного программирования.
Вопрос №3. Игра с природой, распределение вероятностей состояний природы. Статистические критерии оптимальности стратегии игрока при наличии распределения вероятностей состояний природы: критерий максимального ожидаемого выигрыша, критерий минимального ожидаемого риска; эквивалентность критериев.
Задача. Решить игру с природой с платёжной матрицей:
8 | 8 | 7 | |
А= | 6 | 5 | 4 |
3 | 8 | 19 |
билет № 9
Вопрос №1. Принципы математического моделирования конфликтных ситуаций в условиях неопределенности и риска. Игра как математическая модель.
Вопрос №2. Игра с нулевой суммой, критерий оптимальности смешанной стратегии. Нахождение оптимальной смешанной стратегии как решения системы линейных алгебраических уравнений.
Вопрос №3. Игра с природой, платежная матрица. Критерии оптимальности стратегии игрока при отсутствии информации о состоянии природы: критерий пессимизма- оптимизма Гурвица.
Задача. Решить игру с нулевой суммой с платёжной матрицей:
18 | 28 | 37 | |
А= | 64 | 55 | 46 |
37 | 87 | 19 |
билет № 10
Вопрос №1. Игра как математическая модель конфликтной ситуации в условиях неопределенности и риска, игроки и их цели, степень антагонизма, неопределенность как отсутствие информации, риск как упущенная выгода, оптимальная программа действий.
Вопрос №2. Игра с нулевой суммой, критерий оптимальности смешанной стратегии. Графический способ решения игры 2 на 2.
Вопрос №3. Игра с природой, платежная матрица, матрица рисков. Критерии оптимальности стратегии игрока при отсутствии информации о состоянии природы: критерий минимаксного риска Сэвиджа.
Задача. Решить игру с природой с платёжной матрицей:
1 | 2 | 3 | |
А= | 6 | 5 | 4 |
3 | 8 | 1 |
билет № 11
Вопрос №1. Принципы математического моделирования конфликтных ситуаций в условиях неопределенности и риска. Игра как математическая модель.
Вопрос №2. Игра с седловой точкой как вырожденный случай игры с нулевой суммой, седловая точка платежной матрицы, оптимальные чистые стратегии.
Вопрос №3. Игра с природой, нулевая степень антагонизма, игрок и природа, состояния природы и оптимальная стратегия игрока, платежная матрица, матрица рисков, распределение вероятностей состояний природы.
Задача. Решить игру с нулевой суммой с платёжной матрицей:
1 | 2 | 3 | |
А= | 4 | 5 | 6 |
7 | 8 | 9 |
билет № 12
Вопрос №1. Игра как математическая модель конфликтной ситуации в условиях неопределенности и риска, игроки и их цели, степень антагонизма, неопределенность как отсутствие информации, риск как упущенная выгода, оптимальная программа действий.
Вопрос №2. Игра с нулевой суммой как стратегическая игра. Отношения между стратегиями. Мажорирование чистых стратегий, мажорирование смешанных тратегий. Множество оптимальности, принцип оптимальности по Парето. Построение эквивалентной редуцированной игры исключением мажорируемых стратегий.
Вопрос №3. Игра с природой, платежная матрица. Критерии оптимальности стратегии игрока при отсутствии информации о состоянии природы: максимаксный критерий, максиминный критерий Вальда.
Задача. Решить игру с природой с платёжной матрицей:
18 | 28 | 37 | |
А= | 64 | 55 | 46 |
37 | 88 | 19 |
билет № 13
Вопрос №1. Принципы математического моделирования конфликтных ситуаций в условиях неопределенности и риска. Игра как математическая модель.
Вопрос №2. Игра с нулевой суммой. Построение эквивалентной пары двойственных задач линейного программирования, построение эквивалентной платежной матрицы.
Вопрос №3. Игра с природой, распределение вероятностей состояний природы. Статистический двухпараметрический критерий максимального ожидаемого выигрыша и минимального среднеквадратичного риска. Построение множества оптимальности с учетом ожидаемого выигрыша и среднеквадратичного риска, принцип оптимальности по Парето.
Задача. Решить игру с нулевой суммой с платёжной матрицей:
89 | 28 | 73 | |
А= | 64 | 55 | 46 |
37 | 28 | 19 |
билет № 14
Вопрос №1. Игра как математическая модель конфликтной ситуации в условиях неопределенности и риска, игроки и их цели, степень антагонизма, неопределенность как отсутствие информации, риск как упущенная выгода, оптимальная программа действий.
Вопрос №2. Игра с нулевой суммой. Статистический подход, чистые стратегии, частота чистых стратегий, смешанные стратегии. Средний ожидаемый выигрыш и проигрыш, нижняя и верхняя цена игры. Критерий оптимальности смешанной стратегии.
Вопрос №3. Игра с природой. Статистический подход в играх с природой, условный средний ожидаемый выигрыш стратегии, риск как среднеквадратичное отклонение условного выигрыша. Статистический двухпараметрический критерий максимального ожидаемого выигрыша и минимального среднеквадратичного риска.
Задача. Решить игру с природой с платёжной матрицей:
1 | 2 | 3 | |
А= | 4 | 5 | 6 |
7 | 8 | 9 |
билет № 15
Вопрос №1. Принципы математического моделирования конфликтных ситуаций в условиях неопределенности и риска. Игра как математическая модель.
Вопрос №2. Игра с нулевой суммой, критерий оптимальности смешанной стратегии. Нахождение оптимальной смешанной стратегии как оптимального решения задачи линейного программирования.
Вопрос №3. Игра с природой, распределение вероятностей состояний природы. Статистические критерии оптимальности стратегии игрока при наличии распределения вероятностей состояний природы: критерий максимального ожидаемого выигрыша, критерий минимального ожидаемого риска; эквивалентность критериев.
Задача. Решить игру с нулевой суммой с платёжной матрицей:
8 | 8 | 7 | |
А= | 6 | 5 | 4 |
3 | 8 | 19 |
билет № 16
Вопрос №1. Игра как математическая модель конфликтной ситуации в условиях неопределенности и риска, игроки и их цели, степень антагонизма, неопределенность как отсутствие информации, риск как упущенная выгода, оптимальная программа действий.
Вопрос №2. Игра с нулевой суммой. Статистический подход, критерий оптимальности смешанной стратегии. Основная теорема теории игр.
Вопрос №3. Игра с природой, распределение вероятностей состояний природы.
Статистический подход в играх с природой, условный средний ожидаемый выигрыш стратегии, условный средний ожидаемый риск стратегии.
Задача. Решить игру с природой с платёжной матрицей:
89 | 82 | 73 | |
А= | 64 | 55 | 46 |
37 | 28 | 19 |
билет № 17
Вопрос №1. Принципы математического моделирования конфликтных ситуаций в условиях неопределенности и риска. Игра как математическая модель.
Вопрос №2. Игра с нулевой суммой, критерий оптимальности смешанной стратегии. Графический способ решения игры 2 на 2.
Вопрос №3. Игра с природой, платежная матрица, матрица рисков. Критерии оптимальности стратегии игрока при отсутствии информации о состоянии природы: критерий минимаксного риска Сэвиджа.
Задача. Решить игру с нулевой суммой с платёжной матрицей:
1 | 2 | 3 | |
А= | 6 | 5 | 4 |
3 | 8 | 1 |
билет № 18
Вопрос №1. Игра как математическая модель конфликтной ситуации в условиях неопределенности и риска, игроки и их цели, степень антагонизма, неопределенность как отсутствие информации, риск как упущенная выгода, оптимальная программа действий.
Вопрос №2. Игра с нулевой суммой, критерий оптимальности смешанной стратегии. Нахождение оптимальной смешанной стратегии как решения системы линейных алгебраических уравнений.
Вопрос №3. Игра с природой, платежная матрица. Критерии оптимальности стратегии игрока при отсутствии информации о состоянии природы: критерий пессимизма- оптимизма Гурвица.
Задача. Решить игру с природой с платёжной матрицей:
8 | 8 | 7 | |
А= | 6 | 5 | 4 |
3 | 8 | 19 |
билет № 19
Вопрос №1. Принципы математического моделирования конфликтных ситуаций в условиях неопределенности и риска. Игра как математическая модель.
Вопрос №2. Игра с нулевой суммой как стратегическая игра. Отношения между стратегиями. Мажорирование чистых стратегий, мажорирование смешанных тратегий. Множество оптимальности, принцип оптимальности по Парето. Построение эквивалентной редуцированной игры исключением мажорируемых стратегий.
Вопрос №3. Игра с природой, платежная матрица. Критерии оптимальности стратегии игрока при отсутствии информации о состоянии природы: максимаксный критерий, максиминный критерий Вальда.
Задача. Решить игру с нулевой суммой с платёжной матрицей:
18 | 28 | 37 | |
А= | 64 | 55 | 46 |
37 | 88 | 19 |
билет № 20
Вопрос №1. Игра как математическая модель конфликтной ситуации в условиях неопределенности и риска, игроки и их цели, степень антагонизма, неопределенность как отсутствие информации, риск как упущенная выгода, оптимальная программа действий.
Вопрос №2. Игра с седловой точкой как вырожденный случай игры с нулевой суммой, седловая точка платежной матрицы, оптимальные чистые стратегии.
Вопрос №3. Игра с природой, нулевая степень антагонизма, игрок и природа, состояния природы и оптимальная стратегия игрока, платежная матрица, матрица рисков, распределение вероятностей состояний природы.
Задача. Решить игру с природой с платёжной матрицей:
1 | 2 | 3 | |
А= | 6 | 5 | 4 |
3 | 8 | 1 |